
Python for Data and Text Mining
Mohammed Shameer Iqbal

bit.ly/SMU-2019-1

http://bit.ly/SMU-2019-1

Who am I?
● Senior AI developer at Rein Tech - rein.ai

● Founder of InsightWell

● Alumni of Acadia University

● Started writing Python six years ago as I hated

Matlab®, never turned back

● I write Python on most days but do write

JavaScript when I hate myself

● Make a lot of bad jokes

Agenda
● Introduction to python: history, philosophy

● Hello World!

● Whitespaces, no brackets

● Data types

● Operators

● Data structures

● Standard libraries

● Numpy

● Leave some time for question and clarification

Workshop != Lecture
● Follow along, ask me to slow down if

I go too fast

● Ask questions

● Ask for help, flag either me or one of

the TAs down

● Basis for upcoming workshop and

classes

Python History
● Created by Guido van Rossum in 1991

● Older than Java

● Named after British TV comedy Monty

Python

● Current python version is 3.7

● Support for python 2 will end in 2020

Spyder Editor

Hello World
print("Hello, World!")

Python’s philosophy
● Zen of python

> import this

● Highlights:

○ Beautiful is better than ugly

○ Explicit is better than implicit

○ Simple is better than complex

○ Complex is better than complicated

○ Readability counts

What’s different in Python
● Interpreted

● Interactive

● Object oriented

● Dynamic - more on that later

● Simple and reads like pseudocode

● Comes with standard library for most tasks

● Common scripting language

● Automatic garbage collection (no more malloc, free or seg faults)

● Spaces and tabs count as whitespace

● Indentation denotes a code block, no braces, no semicolons

 vs

● Try:

from __future__ import braces

File "<ipython-input-16-2aebb3fc8ecf>" , line 1

 from __future__ import braces

SyntaxError: not a chance

Whitespaces

Comments
● Single line comment start with ‘#’

This is a comment

● Multi line comment start and ends with “””

"""

This is long

and multi line

comment

"""

Identifiers
● Name given to things like class, functions, variables

● Combinations of letters (a-zA-Z) , digits (0-9) and underscore (_), however

cannot start with a digit

● Cannot be a keyword or use special characters

○ Valid identifiers: help, help12, Help_12, _help

○ Invalid: 1help, help-1, help#1

● Snake case is recommended:

○ e.g . this_is_a_var = 10

Data types
● Integers: my_var = 1024

● Float: my_float_var = 1024.0

● Boolean: is_binary = True

● Strings: my_str = "Hello, world!"

● Complex numbers, literals: let’s skip that!

● In a sequence such as a string, each element

is a assigned an index based on their position

● Indices in Python start with “0”, this is not

Matlab®

● ‘:’ is called slicing operator

“There are 2 hard problems in
computer science: cache
invalidation, naming things,
and off-by-1 errors”

Let’s talk about indices

Operators
● Assignment: =, +=, -=

● Arithmetic: +, -, *, /, //, %, **

● Relational: <, >, <=, >=, ==, !=

● Logical: and, or, not

● Membership: in, not in

Control structures
if

if, elif, else

while

for - range()

break, continue, pass

● Executes code block when condition is true:

○ if condition:

 # to do

IF

● Executes appropriate code block based on the condition:

IF… ELSE

WHILE

FOR
● Little different compared to for in C or other languages

● “The Python for statement iterates over the members of a sequence in order,

executing the block each time”

● range() - is usually used to provide a sequence to operate for loop

CONTINUE… BREAK…

Functions
● Functions are building blocks helps with code

reuse, abstraction and breaks into smaller

logical blocks

def function_name(arg):

"""

Description of what function does

arg: data type of

"""

 function code

 return something

Data structure
● Tuple

● Lists (stack and queues)

● Dictionary

● Sets

Tuple
● A tuple consists of a number of values separated by commas

○ t = 12345, 54321, 'hello!'

● Each value can be accessed using indexes

○ t[2]

● Immutable: cannot change value for individual elements, like strings

○ t[2]="world"

Traceback (most recent call last):

 File "<ipython-input-9-a827aea9ff96>", line 1, in <module>

 t[2]="world"

TypeError: 'tuple' object does not support item assignment

Lists
● List is a fundamental data structure in python

● List is a mutable data structure that can contain elements of all data types

○ my_list = [1, "Hello", 3.4]

● Elements can be accessed by using indices

● Unlike C, you do not have decide the list size. Just keep adding things

List functions
append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

● Change the list item:

○ my_list[1] = "world"

● Loop through the list:

○ for item in my_list:

 print(item)

● Enumerate through the list:

○ for i, v in enumerate(my_list):

print(i, v)

List operations

List comprehension
● a concise way to create lists

my_list = [i for i in range(10)]

is equivalent to:

my_list = []

for i in range(10):

 my_list.append(i)

● We can include conditions as well:

○ my_list = [i for i in "hello world" if i!='o']

Dictionary
● “A dictionary constant consists of a series of key-value pairs enclosed by curly

braces { }”

● Things in the dictionary are indexed based on keys

● Keys should be number or string while value could hold any type

○ x = {"one":1, "two":2, "three":3}

○ my_dict = {"list_item": [1,2,3], "not_list": 4}

Dictionary operations
● Unlike lists, dictionaries do not have positional indices

● Items has to be access through keys

○ print(x["one"])

● To avoid KeyError, use get() function

○ my_dict.get("eleven", "none")

● To add an element to dictionary, just assign value with a new key:

○ x["four"] = 4

● “in” keyword can be used to check if key exists

● pop() and del() can be used to remove an item from the dictionary

● keys()will return all the keys in the dictionary:

○ for item in x.keys():

 print(item)

● values() will return the values:

○ for item in x.values():

 print(item)

Dictionary functions

Sets
● “A set is an unordered collection with no

duplicate elements”

● Similar to mathematical set, we can

perform set operations such as

intersection, union, difference, etc.

○ x1 = {'foo', 'bar', 'baz'}

x2 = {'baz', 'qux', 'quux'}

x1.difference(x2)

x1 - x2

Python modules
● To simplify, module in python is just a file that can contain classes, functions and

variables

● Large projects are usually broken down into modules which can be reused just like

we do with functions

○ import module1

○ from module1 import func

● Be careful with name spaces

● Refactor your code to make it reusable as modules

○ if __name__ == '__main__':

Notable standard libraries and functions
● len() - returns the length of the sequence

● re - built-in regex module

● datetime, time - date and time related functions

● os - os related functions. Very helpful in writing scripts as the functions are os

agnostic

● argparse — Parser for command-line options

● random - library for pseudo-random functions

● csv - library to read and write csv files

Reference: https://docs.python.org/3/library/

https://docs.python.org/3/library/

● import random

random.random()

pets = ["cat", "dog", "fish"]

a random element from a sequence

random.choice(pets)

shuffle a list (in place)

random.shuffle(pets)

a random integer from 1 to 10 (inclusive)

random.randint(1, 10)

Random library

CSV library
● import csv

with open("numbers.csv") as f:

 r = csv.reader(f)

 for row in r:

 print row

● We often might need libraries beyond standard libraries

● Anyone can publish their modules as python libraries

● PyPI - Python Package Index has all third-party libraries

● We can use pip to install the required packages

pip install numpy

● To get specific version you can add version to install command:

pip install numpy==1.16.3

Note: Learn about virtual environments to keep your dependencies clean

Non-standard libraries

Numpy Library
● “NumPy is the fundamental package for scientific computing with Python. It

contains among other things:

○ a powerful N-dimensional array object

○ sophisticated (broadcasting) functions

○ tools for integrating C/C++ and Fortran code

○ useful linear algebra, Fourier transform, and random number capabilities”

● Reference: https://www.numpy.org/

https://www.numpy.org/

Numpy - Usage
● import numpy as np

● You can create arrays in many ways:

○ a = np.array([2,3,4])
○ a = np.zeros([3,3])
○ a = np.arange(15).reshape(3,5)

● Shape property gives shape (or dimensions) of the array

● We can perform array-wise operations

○ a = 3 * a

● Indexing and slicing is similar to list except we should be careful about the

dimensions

○ aa = np.arange(15).reshape(3,5)

print(aa[0,0])

print(aa[0])

print(aa[0, :])

print(aa[:,2])

Numpy Indexing and Slicing

Numpy - Shape Manipulation
● We can shape the arrays if the requested

shape still contains the same amount of

elements. For instance, we cannot reshape a

(3,5) array into (5,2)

● vstack and hstack are used to combine two arrays along vertical and horizontal

axis respectively

○ a = np.floor(10*np.random.random([2,3]))

b = np.floor(10*np.random.random([2,3]))

print(np.vstack((a,b)))

print(np.hstack((a,b)))

Numpy - Combining arrays

Numpy + Plot
● import numpy as np

import matplotlib.pyplot as plt

Build a vector of 10000 normal deviates with

#variance 0.5^2 and mean 2

mu, sigma = 2, 0.5

v = np.random.normal(mu,sigma,10000)

Plot a normalized histogram with 50 bins

plt.hist(v, bins=50, density=1)

matplotlib version (plot)

plt.show()

Questions and Recap

